Search results for "Nitrate Reductase"

showing 10 items of 49 documents

Identification of ABA-Mediated Genetic and Metabolic Responses to Soil Flooding in Tomato (

2021

Soil flooding is a compound abiotic stress that alters soil properties and limits atmospheric gas diffusion (O2 and CO2) to the roots. The involvement of abscisic acid (ABA) in the regulation of soil flooding-specific genetic and metabolic responses has been scarcely studied despite its key importance as regulator in other abiotic stress conditions. To attain this objective, wild type and ABA-deficient tomatoes were subjected to short-term (24 h) soil waterlogging. After this period, gas exchange parameters were reduced in the wild type but not in ABA-deficient plants that always had higher E and gs. Transcript and metabolite alterations were more intense in waterlogged tissues, with genoty…

0106 biological sciences0301 basic medicinePlant Sciencelcsh:Plant culturetomatoNitrate reductase01 natural sciencesTomatoabscisic acid03 medical and health scienceschemistry.chemical_compoundAbscisic acidBIOQUIMICA Y BIOLOGIA MOLECULARlcsh:SB1-1110HypoxiaAbscisic acidOriginal ResearchOxidase testbiologyChemistryAbiotic stresshypoxiafungiWild typefood and beveragesMetabolismbiology.organism_classificationSignaling030104 developmental biologyMetabolismBiochemistrySoil floodingsoil floodingSolanumsignalingmetabolism010606 plant biology & botanyWaterlogging (agriculture)Frontiers in plant science
researchProduct

Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation

2019

Lichens are poikilohydrous symbiotic associations between a fungus, photosynthetic partners, and bacteria. They are tolerant to repeated desiccation/rehydration cycles and adapted to anhydrobiosis. Nitric oxide (NO) is a keystone for stress tolerance of lichens

0106 biological sciences0301 basic medicineTrebouxiaDiaphorase activityLichensHyphanitrate reductaseLipid peroxidationBOTANICAPlant ScienceNitrate reductase01 natural sciencesArticleRamalina farinaceaLipid peroxidation03 medical and health scienceschemistry.chemical_compoundstomatognathic systemnitric oxideMicroalgaeLichenskin and connective tissue diseaseslichensEcology Evolution Behavior and Systematics<i>Trebouxia</i>Ecologybiologyintegumentary systemnitric oxide synthaseNitric oxide synthasemicroalgaeBotanyNitric oxidelipid peroxidationbiology.organism_classificationThallusNitric oxide synthasestomatognathic diseases030104 developmental biologyBiochemistrychemistryQK1-989biology.proteinTrebouxiadiaphorase activityNitrate reductase010606 plant biology & botanyPlants
researchProduct

Nitric Oxide in Plants: Production and Cross-talk with Ca2+ Signaling

2008

International audience; Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways. There is increasing evidence for the occurrence of an alternative pathway in which NO production is catalysed from L-arginine by a so far non-identified enzyme. Contradictory results have been reported regarding the respective involvement of these enzymes in specific physiological conditions. Although much remains to be proved, we assume that these inconsistencies can …

0106 biological sciencesMAPK/ERK pathwayArabidopsisPlant ScienceCalcium-Transporting ATPasesBiologyNitrate reductaseArginine01 natural sciencesPlant Physiological PhenomenaNitrate ReductaseNitric oxide03 medical and health scienceschemistry.chemical_compoundNitrateProtein kinasesNitrilesAnimals[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyNitriteMolecular BiologyNitritesPlant Physiological Phenomena030304 developmental biologyMammals0303 health sciencesKinasefungiNitric oxidechemistryBiochemistrySecond messenger systemCitrullineCalciumCryptogeinNitric Oxide SynthaseGenome Plant010606 plant biology & botanySignal Transduction
researchProduct

Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana

2012

Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. In this study, we investigated the production and/or function of NO in Arabidopsis thaliana leaf discs and plants elicited by oligogalacturonides (OGs) and challenged with Botrytis cinerea. We provided evidence that OGs triggered a fast and long lasting NO production which was Ca(2+) dependent and involved nitrate reductase (NR). Accordingly, OGs triggered an increase of both NR activity and transcript accumulation. NO production was also sensitive to the mammalian NO synthase inhibitor L-NAME. Intriguingly, we showed that L-NAME affected NO production by interfering with NR activity, t…

0106 biological scienceschemistry.chemical_classification0303 health sciencesReactive oxygen speciesbiologyPhysiologyfungiMutantfood and beveragesPlant physiologyPlant Sciencebiology.organism_classificationNitrate reductase01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compoundchemistryBiochemistrybiology.proteinArabidopsis thaliana030304 developmental biology010606 plant biology & botanyPeroxidaseBotrytis cinereaPlant, Cell &amp; Environment
researchProduct

Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron upt…

2009

Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition …

0106 biological sciencesroots[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyPhysiologytoxic metalscadmiumNitrogen assimilationArabidopsischemistry.chemical_elementPlant ScienceNitrate reductase01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compoundArabidopsisGeneticsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyplasma membrane transporter2. Zero hunger0303 health sciencesCadmiumbiologyAtNOA1ACLNitric oxideMetabolismbiology.organism_classificationNitric oxide synthasechemistryBiochemistrybiology.proteiniron homeostasis010606 plant biology & botany
researchProduct

Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile

2009

A field-scale manipulation experiment conducted for 16 years in a Norway spruce forest at Solling, Central Germany, was used to follow the long-term response of total soil bacteria, nitrate reducers and denitrifiers under conditions of reduced N deposition. N was experimentally removed from throughfall by a roof construction (‘clean rain plot’). We used substrate-induced respiration (SIR) to characterize the active fraction of soil microbial biomass and potential nitrate reduction to quantify the activity of nitrate reducers. The abundance of total bacteria, nitrate reducers and denitrifiers in different soil layers was analysed by quantitative PCR of 16S rRNA gene, nitrate reduction and de…

2. Zero hunger0303 health sciencesDenitrificationEcology030306 microbiologySoil classification04 agricultural and veterinary sciences15. Life on landBiologyNitrate reductaseThroughfallApplied Microbiology and BiotechnologyMicrobiology03 medical and health scienceschemistry.chemical_compoundNitratechemistryMicrobial population biologyEnvironmental chemistryBotany040103 agronomy & agriculture0401 agriculture forestry and fisheriesSoil horizonDeposition (chemistry)FEMS Microbiology Ecology
researchProduct

Abundance of narG , nirS , nirK , and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland

2006

ABSTRACT Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 10 5 to 8.9 × 10 5 copies per nanogram of DNA but smaller amounts of narG , nirK , and nosZ target molecules. Thus, numbers of narG , nirK , nirS , and nosZ copies per nanogram of DNA ranged from 2.1 × 10 3 to 2.6 × 10 4 , 7.4 × 10 2 to 1.4 × 10 3 , 2.5 × 10 2 to 6.4 × 10 3 , and 1.2 × 10 3 to 5.5 × 10 3 , respectively. The densities of 16S rRNA genes per gram of soil increased with…

ALPINE DEVELOPMENTDNA BacterialglacierNitrite ReductasesDenitrificationNitrogenDenitrification pathwayDIVERSITYBiologyNitrate ReductasePolymerase Chain ReactionApplied Microbiology and BiotechnologyCOLONIZATIONMicrobial EcologyDenitrifying bacteriaRNA Ribosomal 16SBotanyIce CoverMICROBIAL COMMUNITIESGlacier forelandPoaPrimary successionEcosystemSoil Microbiology[SDV.EE]Life Sciences [q-bio]/Ecology environmentRhizosphereBacteriaBase SequenceEcologyRHIZOSPHEREQUANTIFICATIONNitrite reductaseSOILSRNA BacterialGenes BacterialAustriaOxidoreductasesSoil microbiologyFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate

1995

In Bacillus macerans, anaerobic respiratory pathways and the regulation of facultatively anaerobic catabolism by electron acceptors were analysed. In addition to fermentative growth, B. macerans was able to grow anaerobically by fumarate, trimethylamine N-oxide, nitrate, and nitrite respiration with glycerol as donor. During growth by fumarate respiration, a membrane-bound fumarate reductase was present that was different from succinate dehydrogenase. The end product of nitrate and nitrite respiration was ammonia. No N2 or NO and only traces of N2O could be detected. O2 repressed the activity of nitrate and fumarate reductases and the fermentation of glucose, presumably at the transcription…

Anaerobic respirationCellular respirationGeneral MedicineFumarate reductaseNitrate reductaseNitrite reductaseBiochemistryMicrobiologychemistry.chemical_compoundchemistryNitrateBiochemistryGeneticsFermentationNitriteMolecular BiologyArchives of Microbiology
researchProduct

Study of oligogalacturonides-triggered Nitric Oxide (NO) production provokes new questioning about the origin of NO biosynthesis in plants

2014

Addendum to: Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, et al. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 2012; PMID:22394204; http://dx.doi. org/10.1111/j.1365-3040.2012.02505.x.; International audience; We investigated the production and function of nitric oxide (NO) in Arabidopsis thaliana leaf discs as well as whole plants elicited by oligogalacturonides (OGs). Using genetic, biochemical and pharmacological approaches, we provided evidence that OGs induced a Nitrate Reductase (NR)-dependent NO production together with an increased NR activity and NR tran…

Arabidopsis thalianaMutantArabidopsisOligosaccharidesPlant ScienceNitrate reductaseModels BiologicalNitric oxidechemistry.chemical_compoundBiosynthesisL-NAMEGene Expression Regulation PlantPlant defenseArabidopsisPlant defense against herbivoryArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biologybiologyfungifood and beveragesNitric oxideBiotic stressbiology.organism_classificationOligogalacturonidesArticle AddendumNG-Nitroarginine Methyl EsterBiochemistrychemistryNitrate reductase
researchProduct

Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates.

2008

International audience; To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 μg C g−1 of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reduce…

BACTERIAL COMMUNITY STRUCTURE REAL-TIME PCRDNA BacterialDenitrificationMolecular Sequence DataDIVERSITYBiologyGENETIC-STRUCTURENIRKNitrate reductaseMicrobiologyPlant RootsZea mays03 medical and health scienceschemistry.chemical_compoundNitrateBacterial ProteinsBotanyPLANTSSugarEcology Evolution Behavior and SystematicsNitritesSoil Microbiology030304 developmental biology2. Zero hunger0303 health sciencesRhizosphereNitratesBacteria04 agricultural and veterinary sciencesBiodiversitySequence Analysis DNA6. Clean waterCarbonSOIL[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitologychemistry13. Climate actionEnvironmental chemistrySoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesComposition (visual arts)MicrocosmOxidoreductasesOxidation-ReductionMAIZENOSZ GENESEnvironmental microbiology
researchProduct